

Tetrahedron Letters 41 (2000) 8545-8548

TETRAHEDRON LETTERS

A novel synthetic route to ethyl 3-substituted-*trans*-2,3-difluoro-2-acrylates and their reactions with nucleophiles

Qisheng Zhang and Long Lu*

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, PR China

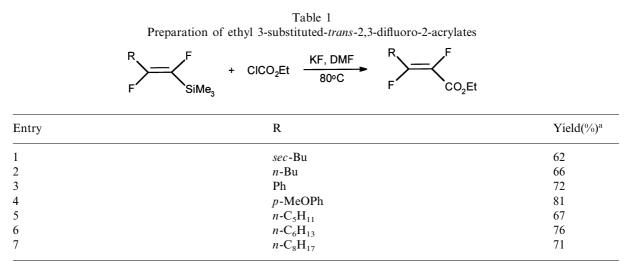
Received 28 June 2000; revised 24 August 2000; accepted 7 September 2000

Abstract

Reaction of a variety of *trans*-1-trimethylsilyl-1,2-difluoroalkenes with ethyl chloroformate in the presence of potassium fluoride gave the corresponding ethyl 3-substituted-*trans*-2,3-difluoro-2-acrylates in good yields, which reacted with a variety of nucleophiles such as hydrazine hydrate, amidines and thiourea etc. in the presence of bases to afford the corresponding 4-fluoropyrazole, 5-fluoropyrimidine and 5-fluoro-2-uracil derivatives in good yields. © 2000 Elsevier Science Ltd. All rights reserved.

Much attention has been given to fluorinated organic compounds both in a theoretical and in a practical sense owing to the characteristic features of fluorine.¹ The introduction of fluorine into organic compounds often leads to enhanced biological activity. The preparation of alkenes fluorinated at selected positions is an important synthetic objective in this area.^{2,3} Recently, stereoselective incorporation of a vinylic fluorine into bioactive organic molecules has been shown to increase biological potency compared with their non-fluorinated parent compounds.^{4–7} However, methodology for introducing the 1,2-difluoroethylene unit (–CF=CF–) stereoselectively into organic compounds has not received much attention,^{8–12} Recently, Burton described the preparation and palladium/CuI catalyzed stereospecific cross-coupling reaction of 1,2-difluorovinylstannanes with aryl iodides and vinyl halides.¹³ We now report a novel synthetic route to a variety of ethyl 3-substituted-*trans*-2,3-difluoro-2-acrylates and their reactions with nucleophiles.

A modified literature procedure¹¹ was utilized to prepare *trans*-(2-alkyl- or 2-aryl-1,2-difluoroethenyl)trimethylsilanes. Trifluorovinyltrimethylsilane, prepared from trimethylsilyl chloride, chlorotrifluoroethylene and *n*-butyl lithium in THF, reacted with a variety of lithium reagents to afford the corresponding addition–elimination products (*trans*>98%) (Scheme 1).

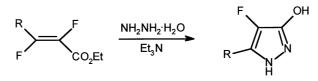

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01517-3

$$CF_2 = CFCI + Me_3SiCI \xrightarrow{\text{n-BuLi, THF}} [CF_2 = CFSiMe_3] \xrightarrow{\text{RLi}} F \xrightarrow{\text{R}} SiMe_3$$

Scheme 1. R = n-Bu, sec-Bu, n-C₅H₁₁, n-C₆H₁₃, n-C₈H₁₇, Ph, p-MeOPh

Hiyama reported the fluoride ion-catalyzed generation and carbonyl addition of *trans*-2-substituted 1,2-difluoroethenyl carbanions from the corresponding *trans*-(2-substituted 1,2difluoroethenyl)silanes.¹⁴ In place of aldehydes, ethyl chloroformate reacted with *trans*-(2-alkylor 2-aryl-1,2-difluoroethenyl)trimethylsilanes in the presence of dry potassium fluoride (1.5–2.0 equiv.) in DMF at 80°C to afford the corresponding esters stereospecifically in good yields. Table 1 summarizes our preliminary results.

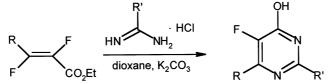

^a Isolated yields based on the corresponding silanes.

As α,β -unsaturated esters, ethyl 3-substituted-*trans*-2,3-difluoro-2-acrylates can undergo Michael addition reactions with nucleophiles such as thiophenol, sodium azide etc. followed by elimination of the β -fluorine to give addition–elimination products.¹⁵ Consequently, a new synthetic route to monofluorinated heterocyclic compounds could be envisaged if reagents with two nucleophilic centers were employed.

Hydrazine monohydrate was selected first to react with ethyl 3-substituted-*trans*-2,3-difluoro-2-acrylates. In the presence of triethylamine, ethyl *trans*-2,3-difluoro-2-heptenoate reacted with a small excess of hydrazine monohydrate in ethanol at room temperature. The reaction was monitored by TLC and ¹⁹F NMR. After the starting material disappeared, the reaction mixture was worked up and purified on a silica gel column to give the corresponding 3-hydroxy-4-fluoro-5-pentylpyrazole in a yield of 80%. The structure was confirmed by ¹H NMR, ¹⁹F NMR, IR and HRMS. Table 2 summarizes the preliminary results.

Similarly, treatment of ethyl 3-substituted-*trans*-2,3-difluoro-2-acrylates with acetamidine hydrochloride and benzamidine hydrochloride, respectively, in the presence of potassium carbonate in 1,4-dioxane afforded the corresponding 5-fluoropyrimidine derivatives in good yield. The preliminary results are listed in Table 3.

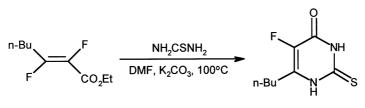
Table 2Preparation of 4-fluoropyrazole derivatives



Entry	R	Yield(%) ^a
1	sec-Bu	76
2	sec-Bu n-Bu	75
3	$n - C_5 H_{11}$	80
4	$n-C_{5}H_{11}$ $n-C_{8}H_{17}$	78

^a Isolated yield based on ethyl 3-substituted-trans-2,3-difluoro-2-acrylates.

 Table 3


 Synthesis of 5-fluoropyrimidine derivatives

Entry	R	R′	Yield(%) ^a
1	sec-Bu	CH ₃	87
2	$n - C_5 H_{11}$	CH_3	85
3	$n-C_6H_{13}$	CH ₃	76
4	Ph	CH ₃	71
5	<i>p</i> -MeOPh	CH ₃	92
6	$n-C_8H_{17}$	CH ₃	89
7	sec-Bu	CH ₃	84
8	<i>n</i> -Bu	Ph	89
9	$n-C_5H_{11}$	Ph	91
10	$n - C_6 H_{13}$	Ph	83
11	Ph	Ph	88
12	<i>p</i> -MeOPh	Ph	81
13	$n - C_8 H_{17}$	Ph	89
14	sec-Bu	Ph	93

^a Isolated yields based on ethyl 3-substituted-trans-2,3-difluoro-2-acrylates.

When thiourea was employed in the above reaction, the corresponding 6-*n*-butyl-5-fluoro-2-thiouracil was obtained in 68% yield (Scheme 2).

In conclusion, we have developed a new and convenient method for the synthesis of ethyl 3-substituted-*trans*-2,3-difluoro-2-acrylates, which can further react with a variety of nucleo-philes such as hydrazine hydrate, amidines and thiourea etc. to afford the corresponding 4-fluoropyrazole, 5-fluoropyrimidine and 5-fluoro-2-uracil derivatives in good yield.

Acknowledgements

We thank the National Natural Science Foundation of China (Grant Number 29825104 and 29632003) and the Chinese Academy of Sciences for financial support of this work.

References

- (a) In Biochemical Aspects of Fluorine Chemistry; Filler, R.; Kobayashi, Y., Eds.; Elsevier Biomedical Press and Kodansha Ltd: Tokyo, 1982. (b) Welch, J. T. Tetrahedron 1987, 43, 3123. (c) In Selective Fluorination in Organic and Bioorganic Chemistry; Welch, J. T., Ed.; ACS Symposium Series, 1991; No. 456.
- (a) Sun, W. C.; Ng, C. S.; Prestwich, G. D. J. Org. Chem. 1992, 57, 132 and references cited therein. (b) Masnyk, M.; Fried, J.; Roelofs, W. Tetrahedron Lett. 1989, 30, 3243. (c) Kwok, P. Y.; Muellner, F. W.; Chen, C. K.; Fried, J. J. Am. Chem. Soc. 1987, 109, 3684.
- (a) Briggs, G. C.; Cayley, G. R.; Dawson, G. W.; Griffiths, D. C.; Macaulay, E. D. M.; Pickett, J. A.; Pile, M. M.; Wadhams, L. J.; Woodcock, C. M. *Pestic. Sci.* 1986, 17, 441. (b) Buist, P. H.; Findlay, J. M.; Leger, G.; Pon, R. A. *Tetrahedron* 1987, 28, 3891.
- 4. (a) Camps, F.; Coll, J.; Fabrias, G.; Guerrero, A. *Tetrahedron* 1984, 40, 2871. (b) Camps, F.; Fabrias, G.; Guerrero, A. *Tetrahedron Lett.* 1986, 42, 3623.
- (a) Taguchi, T.; Takigawa, T.; Kobayashi, Y.; Tanaka, Y.; Jubiz, W.; Briggo, R. G. Chem. Pharm. Bull. 1987, 37, 1666. (b) Ducep, J.-B.; Nave, J. F.; Zimmermann, P. R. Bioorg. Med. Chem. 1994, 2, 213.
- (a) McCarthy, J. R.; Mattews, D. P.; Stemerick, D. M.; Huber, E. W.; Bey, P.; Lippert, B. J.; Snyder, R. D.; Sunkara, P. S. J. Am. Chem. Soc. 1991, 113, 7439 and references cited therein. (b) Mattews, D. P.; Miller, S. C.; Jarri, E. T.; Sabol, J. S.; McCarthy, J. R. Tetrahedron Lett. 1993, 34, 3057.
- (a) Eddarir, S.; Francesch, C.; Mestdagh, H.; Rolando, C. *Tetrahedron Lett.* 1990, 31, 4449. (b) Eddarir, S.; Mestdagh, H.; Rolando, C. *Tetrahedron Lett.* 1991, 32, 69.
- (a) Normant, J. F. J. Organomet. Chem. 1990, 400, 19 and references cited therein. (b) Tellier, F.; Sauvetre, R.; Normant, J.-F. J. Organomet. Chem. 1989, 364, 17.
- (a) Xue, L.; Lu, L.; Pederson, S.; Liu, Q.; Narske, R.; Burton, D. J. *Tetrahedron Lett.* **1996**, *37*, 1921. (b) Xue, L.; Lu, L.; Pederson, S.; Liu, Q.; Narske, R.; Burton, D. J. J. Org. Chem. **1997**, *62*, 1064.
- (a) Asato, A. E.; Liu, R. S. H. Tetrahedron Lett. 1986, 27, 3337. (b) Bildstein, S.; Ducep, J.-B.; Jacob, D.; Zimmermann, P. R. Tetrahedron Lett. 1996, 37, 4941.
- 11. Martinet, P.; Sauvetre, R.; Normant, J. F. Bull. Soc. Chim. Fr. 1990, 86.
- 12. Kuroboshi, M.; Yamada, N.; Takebe, Y.; Hiyama, T. Tetrahedron Lett. 1995, 36, 6271.
- 13. Lu, L; Burton, D. J. Tetrahedron Lett. 1997, 38, 7673 and references cited therein.
- 14. Fujita, M.; Obayashi, M.; Hiyama, T. Tetrahedron 1988, 44, 4135.
- 15. Zhang, Q. S.; Lu, L., to be published.